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Abstract
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paths for U.S. real consumption growth, the real mortgage interest rate, and the supply
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1 Introduction

Starting around the mid-1990s, the U.S. economy experienced correlated booms and busts

in household real estate value, household mortgage debt, and personal consumption expendi-

tures, as shown in Figure 1. The ratio of housing value to consumption peaked in 2006.Q1,

seven quarters prior to the start of the Great Recession in 2007.Q4. The ratio of mortgage

debt to consumption peaked somewhat later in 2009.Q1. The ratio of personal consumption

expenditures to personal disposable income peaked in 2005.Q3. Throughout this period, the

ratio of imputed housing rent to consumption declined steadily.1 Given that rents are a mea-

sure of the “dividend” or service flow from housing, the quiet behavior of rents during the

boom lends support to non-fundamental explanations of the episode. Our aim is to develop a

transparent quantitative model that can account for the patterns observed in Figure 1. In so

doing, we assess the plausibility of the driving forces that are needed to make the model fit

the data.

A wide variety of empirical evidence links the U.S. housing boom to relaxed lending stan-

dards.2 The report of the U.S. Financial Crisis Inquiry Commission (2011) emphasizes the

effects of a self-reinforcing feedback loop in which an influx of new homebuyers with access

to easy mortgage credit helped fuel an excessive run-up in house prices. The run-up, in turn,

encouraged lenders to ease credit further on the assumption that house prices would con-

tinue to rise. As house prices rose, the lending industry marketed a range of exotic mortgage

products, e.g., loans requiring no down payment or documentation of income, monthly pay-

ments for interest-only or less, and adjustable rate mortgages with low introductory “teaser”

rates that reset higher over time. Within the United States, house prices rose faster in areas

where subprime and exotic mortgages were more prevalent (Mian and Sufi 2009, Pavlov and

Wachter 2011, Berkovec, Chang, and McManus 2012). In a given area, past house price ap-

preciation had a significant positive influence on subsequent loan approval rates in the same

area (Dell’Ariccia, Igan, and Laeven 2012, Goetzmann, Peng, and Yen 2012).

In the aftermath of the 2001 recession, the Federal Reserve reduced the federal funds rate

to just 1% and held it there for over 12 months during 2003 and 2004. While some studies

find evidence that low interest rates were an important contributor to the run-up in house

prices (Taylor 2007, McDonald and Stokes 2011) others argue that low interest rates were not

a major factor (Dokko, et al. 2011, Glaeser, Gottlieb, and Gyourko 2013). Aside from the

possible effect on house prices, there is clear evidence that low mortgage interest rates during

this period set off a refinancing boom, allowing consumers to tap the equity in their homes to

pay for all kinds of goods and services. According to data compiled by Greenspan and Kennedy

1Data on household real estate value and household mortgage debt are from the Federal Reserve’s Flow of
Funds Accounts. Data on personal consumption expenditures and personal disposable income are from the
Federal Reserve Bank of St. Louis’FRED data base. Data on imputed rents from owner-occupied housing are
from www.lincolninst.edu, as documented in Davis, Lehnert, and Martin (2008).

2See, for example, Demyanyk and Van Hemert (2011), Duca, Muellbauer, and Murphy (2010, 2011), and
Dokko, et al. (2011).
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(2008, p. 131), free cash generated by home equity extraction contributed an average of $136

billion per year in personal consumption expenditures from 2001 to 2006– more than triple the

average yearly contribution of $44 billion from 1996 to 2000. A follow-up analysis by Dudley

(2017) finds that “between 2004 and 2006, households were increasing their cash flow by over

$200 billion a year by borrowing against their housing equity collateral.”A study by Bhutta

and Keys (2016) estimates that U.S. home equity extraction totaled nearly $1 trillion from

2002 to 2005. Kermani (2012) finds that U.S. counties that experienced the largest increases

in house prices from 2000 to 2006 also tended to experience the largest increases in auto sales

over the same period. The same counties tended to suffer the largest declines in auto sales

from 2006 to 2009 when house prices were falling.3 Similarly, Mian and Sufi (2014) identify a

significant effect on auto spending that operates through home equity borrowing during the

period 2002 to 2006. Laibson and Mollerstrom (2010) argue that the U.S. consumption boom

from 1996 to 2006 was driven mainly by bubbly movements in house prices, not lower real

interest rates.

In this paper, we use a simple quantitative asset pricing model to “reverse-engineer” the

sequences of stochastic shocks that are needed to match the boom-bust patterns observed

in Figure 1. We consider two versions of the model that differ according to the way that

household expectations are formed, either rational expectations or random walk expectations.

Conditional on the observed paths for U.S. real consumption growth, the real mortgage interest

rate, and the stock of residential fixed assets, we use each model’s equilibrium decision rules

to back out sequences for: (1) a shock to housing preferences, and (2) a shock to lending

standards (as measured by a loan-to-value limit) so as to exactly replicate the boom-bust

patterns in household real estate value and mortgage debt from 1993 to 2015, as plotted in

the top panels of Figure 1. We also examine the model predictions for the evolution of other

variables, such as the rent-to-consumption ratio and the consumption-to-income ratio.

Under rational expectations, we show that the model requires large and persistent shocks

to housing preference (i.e., housing demand shocks) to account for the boom-bust cycle in

U.S. housing value. According to the model, an increase in housing preference will increase

the housing service flow, as measured by the imputed rent from owner-occupied housing.

Consequently, the rational expectations model predicts a similar boom-bust cycle in the rent-

to-consumption ratio. But this did not happen in the data.

As an alternative to rational expectations, we consider a setup where households employ

simple random walk forecast rules. This type of forecast rule is consistent with a wide variety

of survey evidence that directly measures agents’expectations (Case, Shiller, and Thompson

2012, Coibion and Gorodnichencko 2015). We show that the model with random walk expec-

tations can match the boom-bust cycle in U.S. housing value with much smaller movements

in the housing preference shock. With random walk expectations, the standard deviation of

3A similar pattern can be found in cross-country data on house prices and consumption. See Glick and
Lansing (2010) and International Monetary Fund (2012).
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the housing preference variable is only about one-fourth as large as the value needed in the

rational expectations model. This is because a random walk forecast exhibits a unit root which

serves to magnify asset price volatility in response to shocks.4 We show that the random walk

model does a much better job of matching the quiet behavior of the U.S. rent-to-consumption

ratio plotted in the lower left panel of Figure 1. More generally, the random walk model cap-

tures the idea that much of the run-up in U.S. house prices and credit during the boom years

appears to be linked to an influx of unsophisticated homebuyers. Given their inexperience,

these buyers would be more likely to employ simple backward-looking forecast rules for future

house prices, interest rates, lending standards, etc. One can also make the case that many

U.S. lenders behaved similarly by approving subprime and exotic mortgage loans that could

only be repaid if housing values remained high.5

New mortgage borrowing in the model is governed by a collateral constraint that depends

on the market value of the housing stock. Each period, a fraction of the outstanding mortgage

debt is refinanced and replaced with a new mortgage loan. The size of the new loan is

subject to a collateral constraint that includes a variable that measures the strength of lending

standards. For the remaining fraction of debt that is not refinanced, the borrower continues to

make payments of interest and principal. The amortization rate on the mortgage contract is

calibrated to approximate a conventional 30-year mortgage loan. A sustained period of rising

housing value together with progressively relaxed lending standards leads to an increase in the

value of new mortgage loans, contributing to a buildup in household leverage. A rapid decline

in housing value leads to a rapid decline in the value of new mortgage loans, but the stock of

outstanding mortgage debt declines slowly, as in the data. Using impulse response functions,

we show that our setup exhibits the feature that housing value peaks earlier than mortgage

debt, consistent with the data plotted in Figure 1.

When we undertake the reverse-engineering exercise, the shifts in lending standards im-

plied by the rational expectations model are identical to those implied by the random walk

model. This is because both models already match the observed time path of U.S. housing

value by means of the housing preference shocks. The reverse-engineering exercise identifies a

relaxation of lending standards during the boom years of 2001 to 2005 followed by a period of

progressively tightening lending standards. This pattern is consistent with evidence from the

Federal Reserve’s Senior Loan Offi cer Opinion Survey on Bank Lending Practices (SLOOS)

which shows that banks started to tighten lending standards before the onset of the Great

Recession and often continued to tighten standards even after the recession ended.

Given the reverse-engineered shocks, both expectations models deliver the same paths for
4This mechanism for magnifying the volatility of house prices is also employed by Gelain, Lansing, and

Mendicino (2013) and Gelain and Lansing (2014). But these papers do not seek to exactly replicate the boom-
bust patterns in the U.S. data, as we do here.

5According to the report of the U.S. Financial Crisis Inquiry Commission (2011, p. 70), new subprime
mortgage originations went from $100 billion in the year 2000 to around $650 billion at the peak in 2006. In
that year, subprime mortgages represented 23.5% of all new mortgages originated. The same report (p. 165)
states: “Overall, by 2006, no-doc or low-doc loans made up 27% of all mortgages originated.”
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the consumption-to-income ratio. According to the simple household budget constraint, the

consumption-to-income ratio is driven by movements in the debt-to-consumption ratio, the

mortgage interest rate, and the stock of housing which, by construction, are the same for both

models. We show that the model-implied path for the consumption-to-income ratio roughly

resembles the hump-shaped pattern observed in the U.S. data from 1993 to 2015.

A virtue of our approach is that we can construct counterfactual scenarios by shutting off

one shock at a time while leaving the other shocks unchanged. A large gap between the model

counterfactual path and the U.S. data path implies that the omitted shock plays an important

role in allowing the model to match the data. While the housing preference shock plays an

important role in both models, the standard deviation of the shock is much smaller in the

random walk model. When we shut off the lending standard shock, the models exhibit only

mild run-ups in debt. This result indicates that shifting lending standards were an important

driver of the boom-bust episode. Put another way, the amplitude of the boom-bust episode

might have been mitigated if mortgage regulators had been more vigilant in enforcing prudent

lending standards. Shutting off the housing supply shock leads to a larger boom in the random

walk model, but there is not much effect in the rational model. This is because the rational

model’s large housing preference shocks tend to dominate the effects of the housing supply

shocks. When the mortgage interest rate shock is shut off, both models continue to match

the boom-bust patterns in U.S. data, implying that the decline in the quarterly real mortgage

interest rate was not an important driver of the episode. Intuitively, the mortgage interest rate

decline observed in the data is not suffi cient to appreciably alter the trajectories of housing

value and mortgage debt in the presence of the other shocks.

Overall, our results lend support to the view that the U.S. housing boom was a classic

speculative bubble involving naive projections about future asset values, imprudent lending

against risky collateral, and ineffective regulatory oversight.

1.1 Related Literature

A common feature of all bubbles is the emergence of seemingly-plausible fundamental argu-

ments that seek to justify the dramatic rise in asset prices. During the boom years of the U.S.

housing market, many economists and policymakers argued that a bubble did not exist and

that numerous fundamental factors were driving the run-ups in housing values and mortgage

debt.6 Commenting on the rapid growth in subprime mortgage lending, Fed Chairman Alan

Greenspan (2005) offered the view that the lending industry had been dramatically trans-

formed by advances in information technology: “Where once more-marginal applicants would

simply have been denied credit, lenders are now able to quite effi ciently judge the risk posed

by individual applicants and to price that risk appropriately.”In a July 1, 2005 interview on

the CNBC network, Ben Bernanke, then Chairman of the President’s Council of Economic

6See, for example, McCarthy and Peach (2004) and Himmelberg, Mayer, and Sinai (2005).
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Advisers, asserted that fundamental factors such as strong growth in jobs and incomes, low

mortgage rates, demographics, and restricted supply were supporting U.S. house prices. In

the same interview, Bernanke stated his view that a substantial nationwide decline in house

prices was “a pretty unlikely possibility.”

Considering the possibility of departures from rational expectations is justified by empir-

ical evidence from surveys that seek to directly measure investor expectations. In a review

of the time series evidence on housing investor expectations from 2002 to 2008, Case, Shiller,

and Thompson (2012, p. 282) find that “1-year expectations [of future house prices changes]

are fairly well described as attenuated versions of lagged actual 1-year price changes.”Studies

by Greenwood and Shleifer (2014) and Adam, Marcet, and Beutel (2017) show that measures

of investor expectations about future stock returns are strongly correlated with past stock

returns and the price-dividend ratio. Koijen, Schmeling, and Vrugt (2015) find similar ev-

idence in other assets classes, including global equities, currencies, and global fixed income

investments. Jurgilas and Lansing (2013) show that the balance of households in Norway

and Sweden expecting a house price increase over the next year is strongly correlated with

nominal house price growth over the preceding year. Ling, Ooi, and Te (2015) find that past

house price changes help to predict future house price changes even after taking into account

every conceivable fundamental variable that the theory says should matter. In a study of data

from the Michigan Survey of Consumers, Piazzesi and Schneider (2009, p. 407) report that

“starting in 2004, more and more households became optimistic after having watched house

prices increase for several years.”Along these lines, Burnside, Eichenbaum, and Rebelo (2016)

develop a model where agents’optimistic beliefs about future house prices can spread like an

infectious disease.

Numerous recent studies have employed quantitative theoretical models to try to replicate

various aspects of the boom-bust cycle in the U.S. housing market. Most of these studies

preempt bubble explanations by assuming that all agents are fully rational. For example,

taking the observed paths of U.S. house prices, aggregate income, and interest rates as given,

Chen, Michaux, and Roussanov (2013) show that a model with rational expectations and long-

term (interest-only) mortgages can approximate the observed patterns in U.S. household debt

and consumption. Their quantitative exercise is similar in spirit to ours with the important

exception that they do not attempt to explain movements in U.S. house prices.

Favilukis, Ludvigson, and Van Nieuwerburgh (2017) argue that the run-up in U.S. house

prices relative to rents was largely due to a financial market liberalization that reduced buyers’

perception of the riskiness of housing purchases, thus lowering the rational expected housing

return and driving up the fundamental price-to-rent ratio. However, this mechanism is directly

at odds with the survey evidence noted above which finds that investors’ expected returns

are high when valuation ratios are high. Even though higher valuation ratios in the data

empirically predict lower realized returns, the survey evidence shows that investors fail to take

this relationship into account; instead they continue to forecast high future returns following
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sustained run-ups in valuation ratios.

Standard dynamic stochastic general equilibrium (DSGE) models with fully-rational ex-

pectations have diffi culty producing large swings in housing values that resemble the patterns

observed in the data. It is common for such models to employ extremely large and persistent

exogenous shocks to rational agents’ preferences for housing in an effort to bridge the gap

between the model and the data.7 We obtain a similar result here when we impose rational

expectations. But, as noted above, large housing preference shocks are not a plausible expla-

nation for the boom-bust episode because these shocks generate extremely large movements in

the imputed housing rent, which are counterfactual. We show that households’use of random

walk forecast rules serves to shrink substantially the required magnitude of the housing pref-

erence shocks that are needed to match the data. Our approach to increasing the volatility

of the model asset price via agents’expectations is similar to other examples in the literature

where agents in the model employ extrapolative-type forecast rules (Barsky and De Long 1993,

Lansing 2006, 2010, Granziera and Kozicki 2015, Glaeser and Nathanson 2018).

Justiniano, Primiceri, and Tambalotti (2017) develop a stylized model that distinguishes

between a credit supply constraint and the more conventional borrowing constraint. They

argue that the U.S. housing boom is best explained as a relaxation of the credit supply con-

straint, as this reduces mortgage interest rates and thereby can generate a sizeable increase in

the steady-state house price. In their quantitative exercises, they compare sequences of steady

states, where each movement in the credit supply limit “is unanticipated by the agents.”

Hence, their proposed explanation can be interpreted as departing from rational expectations,

as is done here. In contrast to their approach, our simulations account for the model’s out-of-

steady-state transition dynamics. We find that the observed decline in the U.S. real mortgage

interest was not an important contributor to the run-up in U.S. housing value– consistent with

the empirical findings of Dokko, et al. (2011) and Glaeser, Gottlieb, and Gyourko (2013). In

this regard, it’s worth noting that U.S. real mortgage interest rates continued to decline for

several years after 2007 while housing values also continued to fall. Our model ascribes a

key role to relaxed borrowing constraints, consistent with the empirical evidence on the rapid

growth of subprime mortgage lending during the boom years.

Boz and Mendoza (2014) show that a model with Bayesian learning about a regime shifting

loan-to-value limit can produce a pronounced run-up in credit and land prices followed by

a sharp and sudden drop. The one-period debt contract in their model causes credit and

the land price to move in tandem on the downside– a feature that is not consistent with

the gradual deleveraging observed in the data. Using a model that abstracts from shifts in

lending standards, Adam, Kuang, and Marcet (2012) show that the introduction of constant-

gain learning can help account for cross-country patterns in house prices and current account

dynamics.

Garriga, Manuelli, and Peralta-Alva (2017) develop a model of house price swings that

7See for example, Iacoviello and Neri (2010) and Justiniano, Primiceri, and Tambalotti (2015), among others.
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shares some common features with ours, i.e., long-term mortgage debt with shocks to the

mortgage interest rate and lending standards. Under perfect foresight, their model cannot

explain the U.S. house price boom-bust episode. In contrast, a version with “shocks to expec-

tations”does a much better job of fitting the data. Gete (2017) shows that introducing the

backward-looking survey expectations from Case, Shiller, and Thompson (2012) into a DSGE

model with housing can help account for movements in U.S. house prices over the period 1994

to 2012.

2 Model

Housing services are priced using a version of the frictionless pure exchange model of Lucas

(1978). The representative household’s problem is to choose sequences of ct, ht, and bt+1 to

maximize

Ê0

∞∑
t=0

βt {log (ct − κCt−1) + θt log (ht)} , (1)

subject to the following equations

ct + pt (ht − ht−1) + [rt + µ+ (1− µ) δ] bt = yt + µ`t. (2)

`t ≤ mt ptht (3)

bt+1 = µ`t + (1− µ) (1− δ) bt (4)

where β is the subjective time discount factor, κ is a parameter that influences risk aver-

sion, and θt ≥ 0 is a variable that measures the strength of housing preference. The symbol
Êt represents the household’s subjective expectation, conditional on information available at

time t. Under rational expectations, Êt corresponds to the mathematical expectation oper-

ator Et evaluated using the objective distribution of shocks, which are assumed known to

the rational household. The variable ct is real non-housing consumption and Ct−1 is lagged

aggregate consumption per household, which serves as an external habit level of consumption.

In equilibrium, we have Ct−1 = ct−1. The variable ht is housing consumption which is directly

proportional to the stock of housing assets, pt is the price of the housing asset which the

household takes as given, bt is outstanding real mortgage debt, rt is the real mortgage interest

rate, yt is real disposable income, and `t is the flow of new mortgage borrowing.

We postulate that each period, the representative household faces a constant probability µ

of refinancing the existing mortgage with a new loan. The size of the new loan `t is subject to

a standard collateral constraint (3), where mt is a variable that governs the strength of lending

standards. We interpret an increase in mt to represent a relaxation of lending standards while

a decrease in mt is a tightening of standards. With probability 1 − µ, the representative

household continues to pay interest and principal on the existing mortgage, where δ ∈ [0, 1)
is the amortization rate, i.e., the fraction of outstanding mortgage debt that is repaid during

the period. The stock of mortgage debt evolves according to the law of motion (4). When
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µ = 1, equations (2) through (4) imply that the entire stock of mortgage debt is refinanced

each period, which is obviously not realistic. In the quantitative analysis, we set µ ∈ (0, 1)
which allows the stock of mortgage debt to exhibit inertia in response to fundamental shocks.8

The exogenous driving variables θt, mt, Rt ≡ 1+rt, and xt ≡ log (ct /ct−1) evolve according
to the following laws of motion:

θt = θ exp (ut) , ut = ρuut−1 + εu,t, εu,t ∼ NID
(
0, σ2u

)
, (5)

mt = m exp (vt) , vt = ρvvt−1 + εv,t, εv,t ∼ NID
(
0, σ2v

)
, (6)

Rt = R exp (τ t) , τ t = ρττ t−1 + ετ ,t, ετ ,t ∼ NID
(
0, σ2τ

)
, (7)

xt = x+ ρx (xt−1 − x) + εx,t, εx,t ∼ NID
(
0, σ2x

)
, (8)

where the stochastic innovations are normally and independently distributed (NID) with

mean zero.

We postulate that the supply of housing responds positively to movements in the market

value of housing according to the following supply function

Ht+1 = AH1−ψ
t (ptHt/Ct)

ψ exp (st+1) , (9)

st = ρsst−1 + εs,t εs,t ∼ NID
(
0, σ2s

)
, (10)

where A > 0, ψ > 0, and Ht and Ct are aggregate per capita variables that are viewed as

outside the control of an individual household. In equilibrium, we have Ht = ht and Ct = ct

for all t. The variable st is an exogenous housing supply shock that evolves according to the

law of motion (10).

Figure 2 provides empirical support for our housing supply function. Using data from the

Bureau of Economic Analysis (BEA), real per capita residential investment (top left panel)

exhibits a boom-bust pattern that looks very similar to the boom-bust pattern in real per

capita household real estate value (bottom left panel). The top right panel of Figure 2 plots a

chain-type quantity index for the net stock of private residential fixed assets, where the data

is normalized to 1.0 in 1993.Q1.9 The quantity index increased by about 25% from 1993.Q1 to

its peak value in 2007.Q4. We use the BEA residential fixed asset data going back to 1960 to

estimate the elasticity parameter ψ in equation (9). The residuals from the regression, plotted

in the bottom right panel of Figure 2, provide us with an empirical measure of the housing

supply shocks.10

8The µ = 1 case corresponds to the setup in Iacoviello (2005), Iacoviello and Neri (2010), Adam, Kuang, and
Marcet (2012), and Boz and Mendoza (2014). The µ ∈ (0, 1) case is similar to the setup in Iacoviello (2015),
Alpanda and Zubairy (2017), and Gelain, Lansing, and Natvik (2018).

9The BEA private residential fixed asset data are from NIPA Table 5.2, line 2, The corresponding investment
data are from NIPA Table 5.8, Line 2. The data are available at annual frequency. We create quarterly time
series by log-linear interpolation of the annual data.
10Our housing supply function (9) implies that Ht is a stationary variable whereas the quantity index in the

data may exhibit a unit root. The estimated value ψ = 0.0092 implies that Ht in the model is highly persistent,
allowing our specification to exactly replicate the path of the quantity index in the data with the appropriate
sequence of housing supply shocks.
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The representative household’s optimization problem can be formulated as

max
ct, ht, bt+1

Ê0

∞∑
t=0

βt£t, (11)

where the current-period Lagrangian £t is given by

£t = log (ct − κCt−1) + θt log (ht) + λt [yt + pt (ht−1 − ht) + bt+1 −Rtbt − ct]
+λtηt [µmt ptht + (1− µ) (1− δ) bt − bt+1] . (12)

The variables λt and ηt are Lagrange multipliers and we have used equation (4) to eliminate

the term µ`t from the household budget constraint (2).

The household’s first-order conditions with respect to ct, ht, and bt+1 are given by

λt =
1

ct [1− κ exp (−xt)]
, (13)

λtpt =
θt
ht

+ λtηtµmt pt + βÊtλt+1pt+1, (14)

λt ηt = λt − βÊtλt+1
[
Rt+1 − (1− µ) (1− δ) ηt+1

]
, (15)

where we have imposed Ct−1 = ct−1 and ct−1/ct = exp (−xt) in equation (13). After dividing
both sides of equation (14) by λt, we can see that the “dividend”or imputed rent from owner-

occupied housing is given by θt/ (λtht)+ηtµmt pt. The imputed rent consists of two parts: (1)

a service flow per unit of housing that is influenced by the stochastic preference variable θt,

and (2) the marginal collateral value of the house in the case when the borrowing constraint

is binding, i.e., when ηt > 0.
11 Equation (14) also shows that, all else equal, an increase in the

equilibrium housing supply ht will put downward pressure on the house price pt.

2.1 Rational Expectations

In Appendix A, we express the model equilibrium conditions in terms of the stationary vari-

ables pn,t ≡ ptht/ct, bn,t ≡ bt/ct−1, and bn,t+1 ≡ bt+1/ct. This procedure facilitates a log-linear
approximate solution of the model in the vicinity of the steady state. Details of the rational

expectations solution are contained in Appendix B. The decision variables are pn,t, bn,t+1,

and ηt. The seven state variables are: (1) the normalized stock of mortgage debt bn,t, (2) the

equilibrium housing stock ht, (3) the housing preference shock ut, (4) the lending standard

shock vt, (5) the mortgage interest rate shock τ t, (6) the housing supply shock st, and (7) the

consumption growth rate xt.

11We confirm that the borrowing constraint is binding at the model steady state. As is common in the
literature, we solve the model assuming that the borrowing constraint is always binding in a neighborhood
around the steady state.
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2.2 Random Walk Expectations

The rational expectations solution is based on strong assumptions about the representative

household’s information set. Specifically, the rational solution assumes that the household

knows the stochastic processes for all five exogenous shocks. The survey evidence described

in Section 1.1 shows that there is strong empirical support for backward-looking type forecast

rules. Motivated by the survey evidence, we postulate that the representative household em-

ploys simple random walk forecast rules that require only a minimal amount of computational

and informational resources. As noted by Nerlove (1983, p. 1255), “Purposeful economic

agents have incentives to eliminate errors up to a point justified by the costs of obtaining

the information necessary to do so... The most readily available and least costly information

about the future value of a variable is its past value.”

From the transformed equilibrium conditions in Appendix A, we see that two of the vari-

ables that the agent must forecast are pn,t+1 ≡ pt+1ht+1/ct+1 and Rt+1 ≡ 1 + rt+1. Figure

3 examines the suitability of a random walk forecast to predict these variables in U.S. data.

The figure plots the root mean squared percentage forecast error (RMSPFE) for one-quarter

ahead forecasts using a forecast rule of the form Êt zt+1 = ω zt + (1− ω) Êt−1 zt, where
zt+1 ∈ {pn,t+1, Rt+1} . The parameter ω > 0 governs the weight assigned to the most recent

observation– analogous to the Kalman gain in a model with noisy information, along the lines

of Coibion and Gordonichenko (2015). For the variable pn,t+1, forecast performance is best

(lowest RMSPFE) when ω ' 1.1 for the pre-boom period and ω ' 1.7 for the boom-bust

period. For the variable Rt+1, forecast performance is best when ω ' 1.3 during both periods.
When ω > 1, a positive forecast error in the current period leads to an upward adjustment in

the forecasted growth of the variable in the next period.12 The value ω = 1 corresponds to

a random walk forecast. Both panels of Figure 3 shows that a forecast rule with ω = 1 does

not sacrifice much in terms forecast performance relative to higher values of ω. Details of the

model solution using random walk expectations are contained in Appendix C.

3 Parameter Values

Tables 1 and 2 show the values of the model parameters that we employ in the simulations. The

parameter values in Table 1 are the same for both expectation models. The habit formation

parameter κ is set to achieve a coeffi cient of relative risk aversion approximately equal to 2 in

steady state. The steady state coeffi cient of relative risk aversion is given by 1/ [1− κ exp (x)] ,
where x is the steady state consumption growth rate. We also experimented with alternative

values of κ, as high as 0.9. The results were broadly similar to the case when κ = 0.5. This

is because the volatility of U.S. consumption growth is relatively low and therefore does not

induce large swings in the model-implied risk aversion coeffi cient during the simulations.

12To see this, the forecast rule can be rearranged as follows: Êt (zt+1 − zt) = (ω − 1) [zt − Êt−1 zt].
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Table 1: Model Parameter Values

Parameter Value Description/Target
κ 0.5 Steady state risk aversion coeffi cient ' 2.
m 0.86 LTV of first-time homebuyers = 0.86 in 1993.Q1
β 0.9876 Housing value/quarterly consumption = 7.3 in 1993.Q1
θ 0.1596 House price/quarterly rent = 80.6 in 1993.Q1
µ 0.0164 Mortgage debt/quarterly consumption = 2.6 in 1993.Q1
R 1.012 Gross quarterly real mortgage interest rate in 1993.Q1.
x 0.0045 Average quarterly real per capita consumption growth.
δ 0.019 Approximate 30-year mortgage amortization rate.
ψ 0.0092 Estimated from BEA private residential fixed assets.
A 0.9819 Consistent with model steady state in 1993.Q1.

From the collateral constraint (3), the parameter m represents the loan-to-value (LTV)

ratio of a new mortgage loan in the event that the household refinances the existing loan. We

choose m = 0.86 to approximate the average LTV of U.S. first-time homebuyers in 1993.Q1,

as plotted by Duca, Muellbauer, and Murphy (2011, p. 534).

From Figure 1, we see that the U.S. housing market ratios are all close to their long-run

means in 1993.Q1. The two expectations models share the same steady state. We choose

the values of β, θ, and µ simultaneously so that the following steady state model ratios

are equal to the corresponding U.S. ratios in 1993.Q1: (1) house price-to-rent, (2) housing

value-to-consumption, and (3) mortgage debt-to-consumption. Data on median U.S. house

prices and median imputed rents from owner-occupied housing are from the Lincoln Land

Institute.13 For consistency with the model, the house price and rent series are both scaled

(preserving the price-to-rent ratio) so that the ratio of the median house price to per capita U.S.

consumption in 1993.Q1 coincides with the ratio of aggregate U.S. housing value to aggregate

U.S. consumption in the same quarter, implying a normalized housing stock of ht = 1 in

1993.Q1. Data on U.S. residential real estate values and household mortgage debt are from

the Federal Reserve’s Flow of Funds. Data on real personal consumption expenditures and

population are from the Federal Reserve Bank of St. Louis’FRED database.

The variable Rt in the model is the gross quarterly real mortgage interest rate which we

construct from the data.14 The steady state value R = 1.012 corresponds to the observed

value in 1993.Q1. Given the high volatility of real per capita consumption growth from one

quarter to the next, we choose the steady state value x to coincide with the sample average

from 1993.Q1 to 2015.Q4. We compute the parameter values ρx, σx, ρτ , and στ to match the

persistence and volatility properties of xt and Rt in the data from 1993.Q1 to 2015.Q4.

13See www.lincolninst.edu. For prices, we use the data series that includes the Case-Shiller-Weiss measure
from the year 2000 onwards, as documented in Davis, Lehnert, and Martin (2008).
14We start with data on the nominal 30-year conventional mortgage interest rate from the Federal Reserve

Bank of St. Louis’FRED database. We then convert the annualized nominal mortgage interest rate into a
quarterly real rate using the trailing 12-month PCE inflation rate as a measure of expected inflation (converted
to a quarterly expected inflation rate).
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Following Alpanda and Zubairy (2017) and Gelain, Lansing, and Natvik (2018), we choose

δ = 0.019 to achieve a realistic amortization rate for a typical 30-year conventional mortgage.

The computation is based on an approximate law of motion for the amortization rate developed

by Kydland, Rupert, and Šustek (2016).

We use the BEA’s chain-type quantity index for the net stock of private residential fixed

assets to construct a normalized path for the real per capita U.S. housing stock from 1960 to

2015. The data are available at annual frequency, so we first create a quarterly time series

by log-linear interpolation of the data. We then normalize the quarterly series so that ht = 1

in 1993.Q1 when pn,t ≡ ptht/ct = 7.3. Given the data for ht and pn,t, we run a regression of

log (ht+1/ht) on a constant and log (pn,t/ht) . The estimated elasticity coeffi cient is ψ = 0.0092,

s.e. = 0.0008. The residuals from the regression define the housing supply shocks which are

plotted in the lower right panel of Figure 2.15 The values of the parameters ρs and σs are

chosen to match the persistence and volatility properties of the housing supply shocks. Finally,

we calibrate the parameter A in the housing supply equation to be consistent with the model

steady state at 1993.Q1.

Table 2: Parameter Values for Shocks

Parameter RE model RW model
1993.Q1 - 2015.Q4
Description/Target

ρx 0.5625 0.5625 AR(1) consumption growth rate.
σx 0.0039 0.0039 Std. dev. consumption growth rate
ρτ 0.9645 0.9645 AR(1) mortgage interest rate.
στ 0.00085 0.00085 Std. dev. mortgage interest rate.
ρs 0.9522 0.9522 AR(1) housing supply shock.
σs 0.00054 0.00054 Std. dev. housing supply shock.
ρu 0.9600 0.9600 AR(1) housing preference shock.
σu 0.2071 0.0499 Std. dev. housing value/consumption.
ρv 0.9600 0.9600 AR(1) lending standard shock.
σv 0.0720 0.0721 Std. dev. mortgage debt/consumption.

Notes: RE = rational expectations. RW = random walk expectations.

The persistence parameters for the housing preference shock ut and the lending standard

shock vt are both set to 0.96, consistent with the observed high persistence of the other two

housing market shocks, namely, the mortgage interest rate shock τ t and the housing supply

shock st. We allow the standard deviations σu and σv to differ across the two expectation

models. Specifically, we calibrate the values of σu and σv so that the rational expectations

(RE) model and the random walk expectations (RW) model can each match the observed

standard deviations of the U.S. housing ratios plotted in the top panels of Figure 1 over the

period from 1993 to 2015. Analytical moment formulas derived from the log-linear solutions

of both models are used in the calibration procedure.

15Lansing and Markiewicz (2018) employ a similar procedure to allow their model to exactly replicate the
path of private nonresidential fixed assets in the data.
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From Table 2, we see that the RE model requires a highly volatile housing preference shock

with σu = 0.2071. This is four times larger than the corresponding value σu = 0.0499 in the

RW model. This comparison highlights the RW model’s ability to generate excess volatility

in the equilibrium house price. Conditional on matching the observed volatility of ptht/ct in

the data, both models require σv ' 0.072 to match the observed volatility of bt/ct.

4 Quantitative Results

4.1 Simulations with Model-Specific Shocks

Figure 4 shows simulation results for the two model versions using the parameter values

in Tables 1 and 2. The four panels in Figure 4 are the model-generated versions of the

corresponding U.S. data ratios plotted earlier in Figure 1. Our calibration procedure ensures

that the RE model and the RW model both match the standard deviations of the housing

value-to-consumption ratio and the mortgage debt-to-consumption ratio from 1993 to 2015.

Consequently, the top two panels of Figure 4 exhibit very similar patterns for the two models.

A crucial distinction between the RE model and the RW model can be seen in the lower

left panel of Figure 4. The RE model predicts substantially higher volatility in the rent-

to-consumption ratio compared to the RW model. This is because the RE model’s housing

preference shock has σu = 0.2071 versus σu = 0.0499 in the RW model. The volatility of the

housing preference shock directly influences the rent-to-consumption ratio which is given by

Rentt
ct

=
θt [1− κ exp (−xt)]

ht
+

ηtµmt pn,t
ht

, (16)

where θt = θ exp (ut) is the stochastic housing preference variable. The first term on the right

side of equation (16) is the housing service flow i.e., the utility dividend, while the second term

is the marginal collateral value of the housing asset. In the simulations, the volatility of the

rent-to-consumption ratio is determined mainly by movements in θt.

The coeffi cient of variation for the rent-to-consumption ratio from a long simulation is

0.75 in the RE model versus 0.21 in the RW model. For comparison, the coeffi cient of vari-

ation for the rent-to-consumption ratio in U.S. data is 0.12 from 1960.Q1 to 2015.Q4. For

the more-recent period of 1993.Q1 to 2015.Q4, the coeffi cient of variation is even lower at

0.02. The extremely low volatility of the rent-to-consumption ratio in the data argues against

fundamental demand shocks as a key driver of the boom-bust episode. A virtue of the RW

model is its ability to generate realistic volatility in the housing value-to-consumption ratio

without the need for implausibly large housing demand shocks.

In Appendix A, we show that the normalized version of the household’s budget constraint

(2) can be written as follows

ct
yt
=

1

1 + pn,t (1− ht−1/ht) +Rtbn,t exp (−xt)− bn,t+1
, (17)
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where the equilibrium housing supply function implies ht−1/ht = A−1 (pn,t−1/ht−1)
−ψ exp (−st) .

The exogenous variables xt, Rt, and st are the same for both models. Our calibration proce-

dure ensures that the standard deviations of pn,t and bn,t are the same for both models. This

explains why the behavior of the consumption-to-income ratio in the simulations is nearly

identical for both models, as shown in the lower right panel of Figure 4.

4.2 Impulse Response Functions with Common Shocks

Figure 5 shows how a common stochastic shock propagates differently in the two models.

The left panels show impulse response functions for the housing value-to-consumption ratio.

The right panels show impulse response functions for the mortgage debt-to-consumption ratio.

From top to bottom, we show the results for a one standard deviation positive innovation to

the housing preference shock ut, the lending standard shock vt, the interest rate shock τ t,

and the housing supply shock st. The standard deviations of the shock innovations are the

calibrated values from the RW model, as shown in Table 2. The vertical axes measure the

percentage deviation of the variable from the deterministic steady state.

The housing value and mortgage debt ratios both increase in response to a positive housing

preference shock and a positive lending standard shock. Both ratios decrease in response to a

positive interest rate shock and a positive housing supply shock. The impulse response func-

tions show that the RW model exhibits excess volatility relative to the RE model. This result

is due to the household’s random walk forecast rules which embed a unit root assumption. Due

to the self-referential nature of the equilibrium conditions, the households’subjective forecast

influences the dynamics of the object that is being forecasted.16

The effects of the shocks are temporary but highly persistent– in most cases lasting in

excess of 80 quarters (20 years). Another notable feature is the timing of the peaks in housing

value versus mortgage debt. Our specification with long-term mortgage debt causes the peak

in housing value to occur well before the peak in debt. This is qualitatively similar to the

pattern observed in Figure 1 for the U.S. data. When the entire stock of mortgage debt is

refinanced each period (µ = 1), both peaks occur at the same time

4.3 Reverse-Engineering Shocks to Match the Data

We now undertake the main part of our quantitative analysis: reverse-engineering the se-

quences of shocks to housing demand and lending standards that are needed to replicate the

boom-bust patterns in U.S. housing value and mortgage debt from 1993 to 2015. All of the

model’s state variables are set equal to their deterministic steady state values at 1993.Q1. As

inputs to the exercise, the model variables xt, Rt, and ht take on the values observed in U.S.

16A simple example illustrates the point. Suppose that pt = dt+β Êt pt+1, where dt follows an AR(1) process
with persistence γ. Under rational expecations, we have V ar (pt) /V ar (dt) = 1/ (1− γβ)2 .When Êt pt+1 = pt,
we have V ar (pt) /V ar (dt) = 1/ (1− β)2 which implies excess volatility in the model asset price whenever
|γ| < 1.
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data over the period 1993.Q2 to 2015.Q4. The time series for xt and Rt− 1 are plotted in the
top panels of Figure 6, while the time series for ht is plotted in the top right panel of Figure

2. The law of motion (7) is used to compute the values of the interest rate shock τ t. The time

series for the housing supply shock st is plotted in the lower right panel of Figure 2.

For each version of the model, we use the exact law of motion for the normalized variable

bn,t+1, equation (A.4) in Appendix A, to back out the sequence for the lending standard

variable mt that is needed to match the path of the U.S. mortgage debt-to-consumption ratio,

where the normalized variable pn,t is given by the U.S. housing value-to-consumption ratio

and xt is given by the U.S. real per capita consumption growth rate. Since equation (A.4)

holds exactly for both models, the resulting sequence for mt is the same for both models.

Given the sequence for mt, we use the law of motion (6) to compute the values of the lending

standard shock vt. Next, we use each model’s log-linearized decision rule for pn,t to back

out sequences for the housing preference shock ut so as to match the U.S. housing value-to-

consumption ratio. Given the sequences for ut, we use the law of motion (5) to compute the

corresponding paths for the housing preference variable θt. The bottom panels of Figure 6

plot the reverse-engineered paths for θt and mt in each model.

Analogous to the model simulations in Figure 4, the RE model requires much larger move-

ments in θt to match the data. The standard deviation of θt is 0.188 in the RE model versus

only 0.046 in the RW model. The time pattern of θt in the RE model closely mimics the path

of the U.S. housing value-to-consumption ratio in Figure 1. Hence, the RE model “explains”

the boom-bust cycle in U.S. housing value as an exogenous phenomenon. In contrast, the RW

model requires much smaller movements in θt to match the same data.

While the flow of new mortgage borrowing `t moves in tandem with housing value according

to the borrowing constraint (3), the stock of long-term mortgage debt adjusts more slowly than

housing value. In order to match the rapid run-up in the stock of U.S. mortgage debt, the

models require a substantial relaxation of lending standards, as summarized by the single

variable mt. The bottom right panel of Figure 6 shows that mt must rise from a steady state

value of 0.86 in 1993.Q1 to an average value of 1.3 during the four year period from 2003

through 2006. The dramatic changes in U.S. housing finance that occurred during the boom

years included the rapid growth of mortgage loans requiring little or no down payment.17

Nevertheless, the model-implied rise in mt should not be taken literally as a prediction for

the LTV of the representative homebuyer. Rather, the rise in mt summarizes an overall

environment of weakening lending standards. For the exercise, we hold the probability µ of

refinancing the existing mortgage constant. Allowing µ to adjust upwards during the boom

years would reduce the model-implied rise in mt. This alternative would be a stylized way of

capturing another feature of the U.S. housing boom, namely, the rapid growth in cash-out

mortgage refinancings that helped fuel the rise in the U.S. consumption-to-income ratio.

Period-by-period fluctuations in the stock of mortgage debt in the data translate into the

17See the report of the U.S. Financial Crisis Inquiry Commission (2011), Chapter 7.
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need for large fluctuations in the flow of new loans, thus accounting for the high volatility

of mt. Notice that mt starts declining before the onset of the Great Recession in 2007.Q4.

A declining value of mt summarizes an overall environment of tightening lending standards.

After 2007.Q4, the value of mt is remains mostly below its steady state value.

Figure 7 plots two indicators of lending standard tightness from the Federal Reserve’s

Senior Loan Offi cer Opinion Survey on Bank Lending Practices (SLOOS). The indicators are

the net percentage of U.S. domestic banks that are tightening lending standards for either

residential mortgage loans or credit card loans.18 Both series show that banks started to

tighten lending standards before the onset of the Great Recession. Moreover, a substantial

percentage of banks continued to tighten standards even after the recession ended in 2009.Q2.

Overall, the SLOOS data is qualitatively consistent with the model-implied path for mt.

Although not shown, we also experimented by setting µ = 1, implying that the entire stock

of mortgage debt is refinanced each period– a setup that is often used in the literature. In

this case, the models do not require any significant increase in mt to match the run-up in

U.S. mortgage debt. When µ = 1, the stock of debt moves in tandem with housing value.

Since housing value is driven upwards by the other shocks, a significant loosening of lending

standards is not needed to explain the run-up in debt. Things are different, however, during

the bust years. To avoid the counterfactual prediction of a rapid deleveraging as U.S. housing

values fell rapidly, the µ = 1 case requires a post-2007 relaxation of lending standards, i.e., an

increase in mt, to simultaneously match the patterns of housing value and mortgage debt in

the data.

Figure 8 plots the model-implied paths for two other variables of interest, namely, the

housing rent-to-consumption ratio, given by equation (16), and the consumption-to-income

ratio, given by equation (17). The RE model predicts a counterfactual boom-bust cycle in

the rent-to-consumption ratio that is driven by the large movements in the reverse-engineered

housing preference variable θt. In contrast, the rent-to-consumption ratio in the RW model

lies much closer to the data. The endogenous bubble-like dynamics generated by household’s

random walk forecast rules allows the RW model to match the data with much smaller housing

preference shocks, thereby avoiding the prediction of large movements in imputed housing

rents.

Both models deliver identical paths for the consumption-to-income ratio. Equation (17)

shows that movements in this ratio are linked mechanically to movements in the variables pn,t,

bn,t, xt, Rt and ht which, by construction, exactly replicate the paths observed in the data.

For comparison purposes, we normalize the model-predicted consumption-to-income ratio to

have the same mean as the U.S. ratio from 1993 to 2015. Abstracting from high-frequency

fluctuations, the model-predicted path for the consumption-to-income ratio exhibits a general

18The data are available from www.federalreserve.gov/boarddocs/SnLoanSurvey/. Prior to 2007.Q2, the
survey data do not distinguish between prime and subprime mortgages. From 2007.Q2 onwards, we plot the
survey responses for prime mortgages.
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hump-shaped pattern that is positively correlated with the boom-bust cycles in housing value

and mortgage debt. This feature of the model is consistent with the empirical evidence cited

in the introduction which indicates that a significant portion of the run-up in U.S. mortgage

debt during the boom years was used to finance a short-term spending binge by consumers.

Relative to the U.S. data, the model consumption-to-income ratio drops more severely during

the Great Recession. But of course the model is missing the numerous automatic stabilizers

and policy responses that helped to support U.S. consumer spending as these events transpired.

4.4 Counterfactual Scenarios

Our final quantitative exercise examines four counterfactual scenarios that are plotted in Figure

9. In each set of panels from top to bottom, we turn off one housing market shock at a time

while leaving the other shocks in place. The purpose of the exercise is to see which housing

market shocks are the most important for explaining the boom-bust episode, as viewed through

the lens of each model.

In the top set of panels in Figure 9, we shut off the housing preference shock so that θt
remains constant at its steady state value for all t. The RE model now exhibits no significant

run-up in housing value. This result confirms the importance of the housing preference shock

in “explaining” the episode under rational expectations. In contrast, the RW model still

exhibits a nontrivial run-up in housing value, albeit smaller in magnitude than the run-up

observed in the data. But recall that the housing preference shock that we shut off in the RW

model is already many times smaller than the corresponding shock in the RE model. The top

right panel of Figure 9 shows that shutting off the housing preference shock serves to dampen

the run-up in mortgage debt in both models relative to the U.S. data. This confirms the

importance of rising housing value as a driver of mortgage credit expansion in both models.

In the second set of panels in Figure 9, we shut off the lending standard shock so that mt

remains constant at its steady state value for all t. There is not much effect on housing value in

either model. This is because housing value is driven mainly by the other shocks, particularly

the housing preference shock. This result highlights a weakness in both models, namely, the

lack of a strong feedback effect from mortgage credit expansion to subsequent housing value

appreciation. An element that is missing from our framework is a mechanism whereby the

weakening of lending standards during the boom years allows for an influx of new homebuyers

and speculative investors who then use borrowed money to bid up house prices. In contrast to

the small effect on housing value, the right panel shows that shutting off the lending standard

shock serves to largely eliminate the run-up in mortgage debt in both models. According to

the models, shifting lending standards were an important driver of the boom-bust episode

in mortgage debt. This counterfactual scenario can be viewed as kind of a macroprudential

policy experiment, i.e., what would have happened if regulators had enforced prudent lending

standards during the boom years? According to the models, prudent regulatory action would

have helped to restrain the mortgage lending boom such that the subsequent debt overhang
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and forced deleveraging would have been less severe.

In the third set of panels in Figure 9, we shut off the mortgage interest rate shock so that Rt
remains constant at its steady state value for all t. Both models continue to exhibit significant

boom-bust cycles in housing value and mortgage debt. This is because the magnitude of the

mortgage interest rate decline in the data is simply too small to have much impact. The top

right panel of Figure 6 shows that the quarterly real mortgage interest rate in the data declined

by only about 30 basis points on net during the boom years. After 2007.Q4, the quarterly real

mortgage interest rate continued to decline by about 60 basis points, eventually hitting bottom

in 2012.Q4. These interest rate drops are not suffi cient to appreciably alter the trajectories of

housing value and mortgage debt in the presence of the other shocks. Hence, according to the

models, the decline in the U.S. mortgage interest rate was not a major driver of the boom-

bust episode. Any model that attributes a large explanatory role to the mortgage interest rate

drop during the boom years prior to 2007.Q4 will likely encounter diffi culty explaining why

the subsequent larger drop in mortgage interest rates after 2007.Q4 did not appear to support

U.S. housing values.

Our result that the mortgage interest rate drop was not important conflicts with the

findings of Taylor (2007) and McDonald and Stokes (2011) who argue that the Fed’s decision

to keep interest rates artificially low during the boom years helped fuel the housing bubble.

Other studies, however, are in agreement with our result. Dokko, et al. (2011) present evidence

that movements in U.S. house prices were much larger than can be explained by the historical

relationship between house prices and interest rates. An empirical study by Glaeser, Gottlieb,

and Gyourko (2013) finds that lower real interest rates can only explain about 20% of the

rise in U.S. house prices from 1996 to 2006. One way to reconcile these various findings

is to postulate that the prevailing environment of low interest rates during the boom years

fostered excessive risk-taking by lenders, who relaxed lending standards in the pursuit of higher

profits. Adrian and Shin (2010) and Jiménez, et al. (2014) present evidence that low interest

rate environments contribute to increased risk-taking by lenders.

In the bottom set of panels in Figure 9, we shut off the housing supply shock so that st = 0

for all t. From the top right panel of Figure 2, we see that shutting off the housing supply

shock serves to dampen the model supply response relative to what is actually observed in

the U.S. data. Shutting off the supply shock produces little effect in the RE model, which

continues to closely track the U.S. data. This is because movements in the RE model are

driven mainly by the large housing preference shock. In contrast, shutting off the housing

supply shock in the RW model produces a larger boom in both housing value and mortgage

debt. Supply shocks play a larger role in the RW model precisely because the model’s smaller

housing preference shocks do not dominate the effects of the supply shocks.

To quantify the relative importance of the various shocks in each model, we compute the

standard deviations of the variables ptht/ct and bt/ct for each counterfactual scenario and then

divide these statistics by the corresponding standard deviations in the baseline exercise with
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all shocks present. The results are shown in Table 3.19 A number close to 1.0 implies that the

shock in question is not very important in allowing the model to match the U.S. data from

1993 to 2015. A number lower than 1.0 implies that the shock in question serves to magnify

the boom-bust cycle. A number higher than 1.0 implies that the shock in question serves to

dampen the boom-bust cycle.

Table 3: Ratio of Standard Deviations: Counterfactual relative to Baseline

ptht/ct bt/ct
Counterfactual scenario RE model RW model RE model RW model
No housing preference shock 0.243 0.783 0.617 0.729
No lending standard shock 0.969 0.916 0.457 0.441
No interest rate shock 0.988 0.976 0.984 0.947
No housing supply shock 0.961 1.194 0.964 1.066
Notes: Each number is the standard deviation in the counterfactual scenario divided by the standard
deviation in the baseline exercise with all shocks present. RE = rational expectations, RW = random
walk expectations.

The quantitative results in Table 3 confirm the visual findings from Figure 9. The housing

preference shock is extremely important in the RE model. When this shock is shut off, the

standard deviation of ptht/ct drops to 24% of the baseline value, while the standard deviation

of bt/ct drops to 62% of the baseline value. The corresponding numbers in the RW model

are 78% and 73%, respectively, confirming the smaller role played by this shock. When the

lending standard shock is shut off, both models exhibit around a 45% drop in the standard

deviation of bt/ct. Shutting off the interest rate shock causes the various standard deviations

to drop by only 5% or less in both models. Shutting off the housing supply shock only slightly

reduces the standard deviations in the RE model. But in the RW model, shutting off the

housing supply shock causes the standard deviations of ptht/ct and bt/ct to go up by 19% and

7%, respectively. Overall, the results in Table 3 show that shocks to housing demand, housing

supply, and lending standards were all potentially important, but movements in the mortgage

interest rate were not.

5 Conclusion

Episodes of explosive, bubble-like growth in house prices have occurred in many OECD coun-

tries over the past four decades (Engsted, Hviid, and Pedersen 2016). A recent cross-country

empirical study by Jordà, Schularick, and Taylor (2015, p. S17) concludes that “Mortgage

and house price booms are predictive of future financial crises, and this effect has also become

much more dramatic since WW2.”Our simple quantitative asset pricing model helps to shed

19Our methodology is conceptually similar to that of Chari, McGrattan, and Kehoe (2007) who develop
a quantitative business cycle model to assess the relative importance of four “wedges” that relate to labor,
investment, productivity, and government consumption.
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light on the underlying causes of the recent boom-bust cycle in the U.S. housing market. A

clear understanding of these causes is important because it could help in the design of policy

actions to avoid future crises.

The offi cial report of the U.S. Financial Crisis Inquiry Commission (2011, p. xvii) states:

“We conclude this financial crisis was avoidable. . . Despite the expressed view of many on

Wall Street and in Washington that the crisis could not have been foreseen or avoided, there

were warning signs. The tragedy was that they were ignored or discounted.”The report lists

such red flags as “an explosion in risky subprime lending and securitization, an unsustainable

rise in housing prices, widespread reports of egregious and predatory lending practices, (and)

dramatic increases in household mortgage debt.”

Our preferred model of the boom-bust cycle includes the following elements: (1) households

who employ simple backward-looking forecast rules that give rise to excess volatility in house

prices, (2) long-term mortgage contracts that cause the stock of outstanding household debt

to adjust more slowly than the flow of new loans, and (3) relaxed lending standards during

the run-up that allowed for excessive household borrowing.
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A Appendix: Equilibrium Conditions in Stationary Variables

We define the following stationary variables: pn,t ≡ ptht/ct, bn,t ≡ bt/ct−1, and bn,t+1 ≡
bt+1/ct. After substituting in these definitions, the transformed equilibrium conditions are

pn,t =
1− κ exp (−xt)
1− ηtµmt

{
θt + β Êt

[
pn,t+1

1− κ exp (−xt+1)
(ht/ht+1)

]}
, (A.1)

ηt = 1− β [1− κ exp (−xt)] Êt
{

exp(−xt+1)
1−κ exp(−xt+1)

[
Rt+1 − (1− µ) (1− δ) ηt+1

]}
(A.2)

ct/yt = [1 + pn,t (1− ht−1/ht) +Rtbn,t exp (−xt)− bn,t+1]−1 , (A.3)

bn,t+1 = µmt pn,t + (1− µ) (1− δ) bn,t exp (−xt) , (A.4)

ht+1/ht = A (pn,t/ht)
ψ exp (st+1) , (A.5)

where equations (A.1) and (A.2) are the first order conditions (14) and (15), equation (A.3)

is the household budget constraint (2), equation (A.4) combines the collateral constraint (3)

and the law of motion for debt (4), and equation (A.5) is the housing supply function (9).

The decision variables are pn,t, bn,t+1, and ηt. After substituting in for θt, mt, and Rt using

equations (5) through (7), we have seven state variables: bn,t, ht, ut, vt, τ t, st, and xt.

B Appendix: Solution with Rational Expectations

Under rational expectations, a conjectured solution to the transformed equilibrium conditions

(A.1) through (A.5) takes the following form

pn,t/pn '
(
ht/h

)a2
exp [a3ut + a4vt + a5τ t + a6st + a7 (xt − x)] , (B.1)

ηt/η ' exp [f5τ t + f7 (xt − x)] , (B.2)

bn,t+1/bn '
(
bn,t/bn

)d1 (
ht/h

)d2
exp [d3ut + d4vt + d5τ t + d6st + d7 (xt − x)] , (B.3)

where ai, fi, and di, are solution coeffi cients. To compute the solution, we take logarithms

of equations (A.1) and (A.2) and apply a first-order Taylor series approximation to each

equation. The approximation points are the deterministic steady values pn, bn, η, h, and x.

The steady state values of ut, vt, τ t, and st are zero. The conjectured decision rules (B.1)

and (B.2) are iterated ahead one period and used to substitute out pn,t+1 and ηt+1 from the

approximate versions of (A.1) and (A.2). We evaluate the conditional expectations of the

exogenous shocks using the AR(1) laws of motion (5), (6), (7), (8), and (10). After collecting
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terms, the approximate versions of (A.1) and (A.2) are now in the same form as (B.1) and

(B.2). The mapping from the actual solution to the conjectured solution pins down the values

of the unknown solution coeffi cients. Finally, we substitute the decision rule for pn,t from (B.1)

into the approximate version of (A.4) to obtain the log-linear law of motion for debt (B.3).

For the model simulations shown in Figures 4 and 5, we first construct log-linear approxi-

mations of the two objects in equations (A.1) and (A.2) that the household must forecast. We

then substitute in the decision rules (B.1) and (B.2) evaluated at time t+ 1. The conditional

expectations are computed analytically and substituted into the original nonlinear equilibrium

conditions (A.1) and (A.2) to obtain the values of pn,t and ηt each period. Other endogenous

variables evolve according to the exact laws of motion (A.3) through (A.5).

C Appendix: Solution with Random Walk Expectations

We first use equation (A.5) to eliminate ht/ht+1 from equation (A.1). The two objects at time

t+ 1 that the agent must forecast can now be written as follows:

z1,t+1 ≡
pn,t+1

1− κ exp (−xt+1)
exp (st+1) , (C.1)

z2,t+1 ≡
exp (−xt+1)

1− κ exp (−xt+1)
[
Rt+1 + (1− µ) (1− δ) ηt+1

]
. (C.2)

The household’s random walk forecast rules take the form Êt z1,t+1 = z1,t and Êt z2,t+1 =

z2,t. Substituting the forecast rules into (A.1) and (A.2) yields the following two equations

that are solved each period for pn,t and ηt

pn,t =
[1− κ exp (−xt)] θt + βA−1hψt p

1−ψ
n,t exp (−st)

1− ηtµmt
, (C.3)

ηt =
1− βR exp (−xt + τ t)

1− β (1− µ) (1− δ) exp (−xt)
. (C.4)

Given pn,t from the solution of equation (C.3), we solve for bn,t+1 each period using equation

(A.4). For the reverse-engineering exercise, we also compute log-linear approximations of the

decision rules for pn,t, ηt, and bn,t+1. The log-linear decision rules take the form

pn,t/pn '
(
ht/h

)â2
exp [â3ut + â4vt + â5τ t + â6st + â7 (xt − x)] , (C.5)

ηt/η ' exp
[̂
f6τ t + f̂7 (xt − x)

]
, (C.6)

bn,t+1/bn '
(
bn,t/bn

)d̂1 (
ht/h

)d̂2
exp

[
d̂3ut + d̂4vt + d̂5τ t + d̂6st + d̂7 (xt − x)

]
, (C.7)

which look similar to equations (B.1) through (B.3), but the solution coeffi cients âi, f̂i, and d̂i
are different from those in the rational expectations solution. For example, we have â3 = 0.547
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in equation (C.5) versus a3 = 0.195 in equation (B.1). This explains why the random walk

model can match the volatility of the variable pn,t in the data with a smaller standard deviation

for the housing preference shock ut.
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Figure 1: U.S. Housing Market Boom and Bust

Notes: Starting around the mid-1990s, the U.S. economy experienced correlated booms and busts in household
real estate value, mortgage debt, and personal consumption expenditures. In contrast, the ratio of housing rent
to consumption declined steadily over the same period. The ratio of housing value to consumption peaked in
2006.Q1, seven quarters prior to the start of the Great Recession in 2007.Q4. The ratio of mortgage debt to
consumption peaked somewhat later in 2009.Q1. The ratio of personal consumption expenditures to personal
disposable income peaked in 2005.Q3. For consistency with the model, consumption, disposable income, and
housing rent are converted to quarterly flow measures. The median house price and rent series in the data
are both scaled (preserving the price-to-rent ratio) so that the ratio of the median house price to per capita
consumption in 1993.Q1 coincides with the ratio of aggregate housing value to aggregate consumption in the
same quarter, implying a normalized housing supply of 1.0 in 1993.Q1.
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Figure 2: Housing Supply Variables

Notes: Housing supply in the model is governed by equation (9). The elasticity parameter ψ is estimated
from data on the BEA’s chain-type quantity index for the net stock of private residential fixed assets. The
realizations of the housing supply shock st are computed to allow the model to exactly replicate the path of
private residential fixed assets in the data.
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Figure 3: Assessing the Performance of Random Walk Forecast Rules in U.S. Data

Notes: The figure plots the root mean squared percentage forecast error (RMSPFE) for one-quarter ahead
forecasts of each variable using a forecast rule of the form Êt zt+1 = ω zt + (1− ω) Êt−1 zt, where zt+1 ∈
{pt+1ht+1/ct+1, Rt+1}. Random walk expectations correspond to the case of ω = 1 which does not sacrifice
much in forecast performance relative to higher values of ω.
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Figure 4: Simulations with Model-Specific Shocks

Notes: The four panels are the model-generated versions of the corresponding U.S. data ratios plotted earlier in
Figure 1. The standard deviation of shock innovations in each model is chosen to match the volatilities of the
housing value-to-consumption ratio and the mortgage debt-to-consumption ratio in U.S. data. With random
walk expectations, only a small housing preference shock is needed to match the volatility of the housing
value-to-consumption ratio. The rent-to-consumption ratio exhibits low volatility, similar to the data. With
rational expectations, a highly volatile housing preference shock is needed to match the volatility of the housing
value-to-consumption ratio. The result is a highly volatile rent-to-consumption ratio, which is counterfactual.
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Figure 5: Impulse Response Functions with Common Shocks

Notes: In each panel, the models are hit with the same one-standard deviation positive shock innovation. The
model with random walk expectations exhibits excess volatility relative to the model with rational expectations.
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Figure 6: Reverse-Engineering Shocks to Match the U.S. Data

Notes: As inputs to the reverse-engineering exercise, the model variables xt, Rt, and ht take on the values
observed in the data. The U.S. time series for xt and Rt− 1 are plotted in the top panels above, while the time
series for ht is plotted in the top right panel of Figure 2. The bottom panels show the paths of the reverse-
engineered housing preference variable θt and lending standard variable mt that are needed to exactly replicate
the time paths of the U.S. housing value-to-consumption ratio and the U.S. mortgage debt-to-consumption ratio.
The model with random walk expectations can match the data with much smaller movements in the housing
preference variable θt. Conditional on matching the time paths of the U.S. ratios, both models imply the same
pattern for the lending standard variable mt.

33



Figure 7: Net Percentage of U.S. Banks Tightening Lending Standards

Notes: Two indicators of lending standard tightness from the Federal Reserve’s Senior Loan Offi cer Opinion
Survey (SLOOS). Both series show that banks started to tighten lending standards before the onset of the Great
Recession in 2007.Q4. Moreover, a substantial percentage of banks continued to tighten standards even after
the recession ended in 2009.Q2.
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Figure 8: Model Implied Paths for Other Macroeconomic Variables

Notes: In the model with rational expectations, the large reverse-engineered housing preference shocks generate
a large boom-bust cycle in the rent-to-consumption ratio. In the model with random walk expectations, the much
smaller reverse-engineered housing preference shocks generate less movement in the rent-to-consumption ratio,
which is closer to the pattern observed in the data. By construction, both models imply identical hump-shaped
paths for the consumption-to-income ratio.
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Figure 9: Counterfactual Scenarios

Notes: The figure shows the effects of shutting off one shock at a time on housing value (left panels) and mortgage
debt (right panels), while leaving the other shocks unchanged. A large gap between the model counterfactual
path and the U.S. data path (black line) implies that the omitted shock plays an important role in allowing the
model to match the U.S. data.
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